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ABSTRACT

In this paper, the authors consider the problem of change points within
the framework of model selection procedures using information theoretic criteria.
The authors proposed procedures for estimation of the locations of change points
and the number of change points. The strong consistency of these proceudres
is also established. Also, the problem of change points is discussed within

the framework of the simultaneous test procedures.

Keywords and phrases: Change points, Consistency, Edge detection, Information

theoretic criterion, Model selection, Quality control.
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1. INTRODUCTION

Problems of detection of change points arise in many areas. For example,
in continuous production process, it is of interest to find out the point at
which deterioration in the quality of the product starts. Change point problems
arise (see Mazumdar, Sinha and Li (1985)) in the area of edge detection. For
discussions on some other applications, the reader is referred to Page (1957)
and Holbert and Broemling (1977).

When the underlying distribution is normal, the change point problem is
equivalent to detection of change in mean and/or variance. Chernoff and Zacks
(1964), Page (1955), Hinkley (1970) and several other workers investigated the
problem of change point in the mean. Sen and Srivastava (1973) and Srivastava
and Worsley (1986) investigated the problem of detection of the change in the
mean vectors. In the above papers, change point problems were studied within
the framework of tests of hypotheses.

The object of this paper is to study change points in the mean vectors
within the framework of model selection procedures using information theoretic
criteria. In Section 2, we give some preliminaries which are needed in the
sequel. Section 3 is devoted to the problem of estimation of the locations of
change points when the number of change points is known. The strong consistency
of the procedure is also established. In Section 4, Qe assume that the number
of change points is unknown and propose procedures for the estimation of the
number and locations of change points. The strong consistency of these procedures
is also established. Finally, in Section 5, we discussed the change point

problem within the framework of simultaneous test procedures.
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2. PRELIMINARIES
Let x(t) be an independent p-dimensional process on [0,1] such that
x(t) = u(e) +v(t), 0<tc<l (2.1)

where u(t) is a non-random p-dimensional left-continuous step function and
v(t) is an independent p-variate normal process with mean vector 0 and

covariance matrix I. Denote the jump points of u(t) by t .,tq;(O <t

O
1,...,tq are called the change points of the

1

< t. <

2 coe

process x(t). We assume that N samples are drawn from the process x(t) in

<t <1), Then t
q

equal space, say §(§),...,§(%). Then, it is of interest to estimate the

location of (tl,...,tq) from observations §(§),...,§(5). Here it is

emphasized that for different N, the series {§(§),....§(g)} is different.

Sometimes, the number q of change points is unknown and in this case we have

to estimate q. In this paper, it is assumed a priori that q < L, a constant.
We . now define some concepts and introduce some notations which are useful in

the sequel. From the integer interval [O0,N], we can pick £ integers from

(1,N-1] to divide (O,N] into £ + 1 sections. Let k, < ... < k (0<ki<N)

1 14

Then, we call (kl""’kz) a

partition of the interval (O,N], and ki' 1 <i< g, acut off point of this

denote the £ integers picked from {I,N-1].

partition. Sometimes, we denote (kl,...,ke) by "Z or 7 simply. A partition
(zl,...,zi) is called a refinement partition of (kl""’kt) if the set

{k,,k,,...,k,} is a proper subset of {z z.}. This fact is written as
1’72 I

1'%
(zl,...,zi) (kl,...,ke). If we define L (zl,...,zi), "2 = (kl"'°'k£)'
the above relation is written as ﬂi—J "8'
N .
Define 5; ) = §(§), 1 <i <N, It is obvious that ng) is dependent on
(N)

the sample number N. Throughout this paper, we will use X, instead of x

i ’
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but we must keep in mind that Xy is dependent on N.
If x is a vector, then x' denotes the transpose of x. Also, the
maximum and minimum eigenvalues of the matrix M are denoted by Kmax(M) and

Xmin(M) respectively. Throughout this paper, Cl’CZ’CB etc. denote some

pPositive constants which can assume different values at each of their appearances,

and the Eculidean norm of M is denoted by ||M||. Now we shall prove some lemmas.

At first, we cite a lemma by Fuk and Nageav (1971) .

Lemma 2.1. Let xl,...,xn be independent random variables with Ex. = o,

. n
For t > 2, write S_ = z .- g

2 & n .2 X.» Bn =) Var(xi),
i=} i=1

and E{xift <@, i=1,2,...,n.

n
At,n = .2 Elxilt. Then for x > 0,

i=]
(1 -t
P(S, > %) < Cy )At.nx + exp{-ng)xz/Bi}
where
(1) 2.t (2) -2 -t
Ct (1+ ¢) and Ct = 2(t+2) “e .
(2) 1 -t

In the original paper, C = 2(t+2) ‘e ; this is a printing error.

t

Lemma 2.2. Let xl,...,xN be iid pxl normal vectors with mean vector Q and

positive definite covariance matrix £. Now, let

N
- L .z oy
Ay = § L (xR ) (x%g\) (2.2)
j=1
where
j
- 1 Z
X " -1 X (2.3)
- $-i ot PR
B ey
Then,
' "'-'.,,".'l":"-"l‘;.l'f”l P ,\(-»".... Vs




4
3 ; -(L+2
max(AN) 2 2 )‘max(:)’ <CN )
1 - .
P{ mm(A ) =2 Amin(:)} < CN (L+2)
Proof. For the sake of simplici i f =% % =% % _ =
of simplicity, write fON. X, §0N1 = % ENIN = %,
1 N ' --
Ay TN L %% T XX (2.6)
i=1
Let
x, = (xgpaeees ip)" L<icN
.1 ¥ .
Yik = N 'z %5 %5k 1 <j,k<op. (2.7)

It is easy to see that yjk is the average of N iid random variables. Its

Let Ex, .x

fourth moment is finite. 1551k =

ujk and put t =

Then for any ¢ > 0,

£ -{L+2)
P(Nl 2 (le " Jk)| > 5 ) < C\N . (2.8)
i= 2p
and
B! | 2 er20 < ¢ N
But
1 N L ¥ :
I= (g )i and g §x;x; = (5 § %;y%):pxp
i=] ji=1
It follows
P{| 1Ay - EI] 2 €} < CzN-(L+2) $2.3)

(2.5)

4 in the Lemma 2.1.

oval tah S el el Sol tat ub Sal Sat Sa% Sty Al el Al

(2.4)

Then
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Let AI(A) 2 02 AP(A) dencte the eigenvalues of a pxp matrix A in the sequel.
Then a well-known inequality about symmetric matrix, we have

§ (A, () < er(agn)? (2.10)
i=]

The relations of (2.4) and (2.5) follow immediately from (2.9) and (2.10).
Lemma 2.3. Let §1,...;§N be iid pxl normal vectors, (again take notice

of that Xs 1 <i <N, is dependent on N), x, - NP(O,X), £ > 0 and is unknown.

- ~1
Write
.
Ay = § L Oyrxg)(xi-xg0)
i=1
(2.11)
1 1 p N
)
By ~ § Y (x x )(x x oN, )+ N Y o (x,-x : )(x,-x 1N)
1=1 _N1+1
where )
J
- 1
X,o= =7 § x.
- - -k
BT i

Then we have that AN-BN is non-negative definite, and for k 0 <k, <k, <N,

12 kpp 02k < kg
the following estimates hold.

ky-kp

P{A ("13-

. ) > ¢ -—3- ) < CN (L+2) (2.12)

-klkz-k k

(L+2)

P{ 35 (loglANI-long [) > C logN} < C1 N (2.13)

Proof. Without loss of generality, we prove (2.12) for k = 0, kz = N only.

Let y =Nt ifON Then X(N) ~ NP(Q,IP). Write y( ) . (y(N), ..,y;N))',
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and y (N) (N)' s ( (?)) pxp, where yi?) ygN)ygN). Since ygN)

all i, 1 < i < p it is not difficult to see that

- N(0,1),

C
1 "3 logN

N) ]
P(lyg | > Clog*N) < — e < C:N
i /77 ClogiN L

-(L+2)

for some constant C, and N > 3.

From the fact that 2|yiyj| < yi + y?, it follows immediately that

L : -(L+2)
PU[ | Nxguxoo|[ > ClogN} < C N *~

which implies (2.12).

Here, we note that

1 ¥ - =
AvTN L (Ei'fon)(fi Xon’
i=]
N (N-N,) ..
By + ) ("ON XN )(’.‘ON

and for any vectors

boax'- gy < (xmy)(x-y)' < 20xx +yy')
we have
NN, .

0 <Ay -Bys ) ("ON UN NN"NN

"‘I\‘ e et gt r b L o e d o ool L o n Lt A Ca o L E ol A O p B LA o
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. From (2.12), we get
‘ _ logN -(L+2)
b P{A L (AN By) 2C = } <N (2.15)
N
: It is well-known that for any symmetric matrix D2 and Dl > 0,
(D ) (D )
- 2 é - max
. < (D DD, %) <3 max 2. (2.16)
b~ max(D ) max 271 min(Dl)
\.:,
o
- By Lemma 2.2, we have
. 1 -(L+2)
Y i
N p{Amin(BN) 5 Anin(E)} < CN (2.17)
.
~
i~ From (2.15) - (2.17), it follows that
" P{s, » C logN/N} < ¢ N~ {L+2)
A7) 1= 1
\ . z T -4
: where éi = ,\i(BN (AN BN)BN ).
> From
= N 1og|ay-log|Byl) = ¥ 1og|(z+a t(a -8B )|
y 20 og(Ayi-Tog(Byl) = 5 log{(I+By"{Ay-By/By
v
'
. p p
. N N
’ =3 log( I (148.)) <5 [&., - .
2, 2 i=1 i 2 4= 1t
(2.13) follows.
2,
7 Remark 2.1. Let mp = (k;,...,kp) be a partition of [0,N], where L is less
'-
o than a certain constant L. Set
. k.
‘Tl 2 .J+l
) AL =8 T L Gtk xR (2.18)
5. L §=0 i=k +1 il i+l
- ‘ J
'~
:E where ko = (0, k£+1 = N. Then
4
3 -(L+2)
. P“max(Anz(N)’i 3 Amx(Z)} <CN
L4
(2.19)
o (L+2)
K P{ ,\min(Aﬂz(N)) <3 (z)} < C\N
v
o
s
[y L]
>
-
-
<l
:',‘.. "\-"\"\'\"n"-':\- RS Kt 's S -\-"\"\’-'-. . s."-"\ T v L S R L \"\ At T Tt

e
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f} { f 8 A
)

29
! 8
A
g
7
K To see that (2.19) hold true, we observe that
L
‘ A -a ) =L 1, k)(x -x, ) (x “x )
V. N Tp N i+ k k ~ON" "~k .k, ~ON
. j=0 +1 j i+l
: 2 2
(kipy7ks) .
2 22 E-A:I_L}fkk Xy +éi(kﬁk)"owou
- j=0 i+l i+ j=0
- ; Koy ks _
=2 LS X + 2x
=0 N ~kij+l'kaJ+1 -ON ON
?
4
: From (2.12), we have
o
' - LogN -(L+2)
P (Ay A"z(m) 2 C =g .} <CN (2.20)
A Write - = ; , o
3 Ai(AN A“éN)) /\i simply and write Ay - A (N) = (a, )ipxp
N ¢ ij
- By means of inequalitites
)‘1 > max a,.
. lcicp T
- 2
. A A, > max (a,.a., -a.),
A 172 1<i<j<p ii7jj ij
we have for any £ > 0,
- : -(L+2)
p{llay A“E(N)” >ep < CN (2.21)
Combining (2.9) and (2.20), we have
. PO[[A. (N) - T[> e} < ¢, N (L¥D) (2.22)
g Te - 1
’ Thus, we obtain (2.19).
Remark 2.2. Let ’fl""”fN be independent pxl normal vectors with common
covariance matrix £ > 0. Assume that
" E = = E = E = = E =
) X X = My Xe 41 X My
1 1 2
- E:_(kz f’l ...=E(§k£;=u£. E’sz'*lg ...aEstgzﬂ.

e ]
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and . § J{'l
B (N) == (x. -% Mx, -% )

.E:.: T N 3=0 i=kj+l -1 —-kjkj+l ~i %k. kJ +1
o

‘. Then for m,= (kl""'k?_)' we have for € > 0
o~ P([B, (N)-zf [z} < C\N ~(L+2) (2.23)

)
E The proof is very easy if we notice that X Hpre X 1-1;11, §k1+l‘E2""’
) }-‘k[_H-E?_ﬂ are iid pxl normal vectors so that we can apply Remark 2.1.
\: B

xn

o
-~

" Lemma 2.4. Let Xpoeeea¥y be independent pxl normal vectors with the same
N 2= oo >
\ covariance matrix £ > 0, and _ﬁz = ‘_kl '“”kf_) be a partition of [0,N]. Assume
-

- = .24
.;:_ E}fl uj, k _1<1<k , Ej # Bj+l (2.24)
i
-~ . - -

:-', where j = 1,2,...£+1, and k0 o, k£+l N. Set

x K s
N Ag(k NN = ] (2% Np Lk, +N2)("1 -k Ny kN :

: i=k N +1 3

- il

N k.
& By (k,,N ,N.) = & 'EJ (x,-x )(x,-x )
-~ LI = ~i “k ,k,” =1 “k,-N,,k

:f: N*T371 2 N 1=k.—N1+l Nl j i~k 1

-"

2: kj+N2

> 1

Ly L '

- +L1 (57 % 1k 4N, (¢ xk N ) (2.26)
L i=k . +1 2

L J

).:

-.::E where N, < kj - kj-l’ and N, < kj+l - kj. Set My, = (kl' ..kj_l,kJ-Nl,
- kJ.+N2, kjﬂ,...,kz) and T, o = (kl....,kj_l,k l,k ko +N2,k 4 .,k[_).
‘: Suppose that for some pasitive constant 8,

'

-

y

Lo

&

y <y
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S
) where DN satisfies the following conditions:
) (i) lim DN/logN = w, (2.28)
. N-eo
, (ii) lim D_,/N = 0. (2.29)
N N
~ N
N Then there exist constants Cl and C2 such that
s
g P{r__ (A, (k.,N, ,N,)-B (k.,N ,N))) < C E§ } < C N'(L+2) (2.30)
. {Apax Aty o Ny Ny =Bl N8y 1N 3 :
K.
: and
) N -(L+2)
p{5 (log|A [-log(A [)< CD } < CN ', (2.31)
X 2 Tr£+l TT£+2 2°N 3
N
N where Av , ATr are defined by (2.18).
. 2+1 L+2
b Proof. By calculation and the inequality (2.14), we have
Y A - A = A (k,,N ,N)) - B (k. ,N ,N)
n£+1 17£+2 N 7§12 N*73°71°72
N.N
= N(Nl+§ ) (%k Nk, Sk kN )(%k -N., k. %k k4N
: S A T e T ¥ M I L T T
- NN - -
. > ————=c (S(u,  mu ), -u ) - 2(x -u, ) (x u,.
- Pid v s ln o - | n - _H
NN +N,) 2 25+1 550 R4 I T L
) - 2(x “uL o, )(x U ")
~k.,k,+N, ~j+1""“k.,k.#N, =j+l
3 Tyt ity Y
[: = Uy Iy (2.32)
. 1
From Lemma 2.3, Eq:(2.29) and )\max(Jl) > > tr(J.l), we get
P{A (J,+J,) >C logh ¢ no(E+2) (2.33)
max 2 "3 - N . 1
b Bv P
; A (J)>l—Nli——2(u “u )2>7 D, /N 2.34)
3 max 17 = 2p N(N1+N2) i1 2j F137 2 2cDy/Ns (2.
R N R S A 2 T S A T o S S0 A S TS S SR T
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where

Combine (2.33) and (2.34), the inequality (2.30) follows. By (2.19),

3 -(L+2) -
P{Amax(ATT ) > 5 Amax(Z)} < ClN . (2.35)
242
PO (A, ) <2 (D)} < clN'(L+2).
m 242 mi
By (2.14), (2.33) and expression of A“ - A ,
2+1 42
2 -(L+2)
P{A__ (A -A ) > 2|, ~u. |} < C.N (2.36)
max “£+1 T o+2 ~j+l <j 1
Note that A__ (A™' (A -A_ ) <A axA A )M (A ), there
max" Ter2 g+l e max- M+ 242 : 242
exists C4 > 0 such that
- -(L+2
P(r_, (A (A, A )) 2C,} < CN (L+2) (2.37)
&2 e+l £+2
-1
If A (A (A -A )) < C,, there exists C. > 0 such that
max n£+2 n£+1 n€+2 4 5
g (loglATT |-log|AIr [) = % log| I + A;i (ATr A )A;5 )|
2+1 0+2 42 4+1 T8+2 T+2
> %log(l+)\ma [A;l A, -a_ )])
o Ter2 e e
2 g 5 Amax[An -An )/Amax(An ) (2.38)
+1 £+2 242
But
P{g(loglA" l-1oquTT 1) < CZDN}
o+l 42
Amax(Aﬂ —ATT )
< P{)\max[A;l (A, -A )] 2C,}+ P{g o £+l &2
2+2 e+l €42 me(A )

R N AT T AT AT aT e T e e A
PR AN NS SP A

PRI INR IR . T e et AT At e T A nt AT T 0" A
R I A N A N N N N A N A N N N R N N I N AN NN S RN
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From (2.39), (2.37) (2.35) and (2.30), it follows that (2.31) is true.
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3. ESTIMATION OF CHANGE POINTS WHEN q IS KNOWN

Let 0 < tl < ... < t_ be the change points of the process x(t). We can

(N) (N) (N)
q

0 = (k

find a partition 7 ) for each N, such that

) = u, if ng) < i< k(N),

Ex(
-] j-1 -]

1A

j 2 qtl, (3.1)

Zir

(N)_ (N)

0, kot

where k, = N, and ¥ £ My 1 < j < q+l.

-1

(N)

In order to simplify notation, we write xj for x(ﬁ), "o for L

N)

and
k., for k;
j J

For the integer interval [0,N], there exist (Nél) different integer

partitions denoted by Kq. Assume that n = (ki,...,ké)GK , and h“ is a hypothesis
such that
= 3 . ] . t . ] = ] =
Efi uJ if kj-l <i< kj, 1 < j < q+l, ko o, kq+1 N.

The model Mn is the one for which h“ is true. Let O = ﬂn.Z):vGKq.Z > 0} be

a parametric space. We are interested in selecting one model based upon

observations §1,....§ . Under h", the logarithm of the likelihood function is
qtl -
logl(8) = - ¥ 1og(zf - & Terczla () (3.2)
2 2 j=1 j
where kt
aon =L T G D (x, - ) (3.3)
j =N L X fk k2R T ok :
i=k, .+l -1 j-17]
j-1
. [ ' = =
j 1,2,...,q+1, ko =0 kq+1 N, and 8 (v,2). Let
q+l
A (N) = A (N). 3.4)
L(N) jZl ;¢ (
It is not difficult to see that
Sup logL(8) = - g log|A (N)| - g; (3.5)

oef)

where(gﬁ denotes the parametric space under hTT

I

. Ty v . ‘e "L ~
- ,f\I\ NN ~ \I_- J,r ~ o T f RN M AP ONAG '

\
. LIRS, b \' N\ Wy
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"
and |A| denote the determinant of the matrix of the matrix A. Now let
G = - N logla ()] (3.6)
: " 2 " ’ ’
:; where ™ € Kq' Then there exists a partition m = (Rl,...,iq) € Kﬁ such that
7 G. = maxG_ (3.7)
: - - Tomek
P kl 4
.i Using (—ﬁ ,...,—g) as an estimate of the true location of (tl,...,tq),
‘)
we can prove the following theorem:
‘t Theorem 3.1. Let XpoeeesX be a sample of size N drawn from the process
~ - - k k
N x(t) in equal space, where x(t) is defined by (2.1) Then (—l ""’T? ) is
" a strongly consistent estimate of (tl,...,tq).
- Proof. For each N, let L (kl,...,kq) be a partition so that (3.1) holds.
- It is easy to see that
¢ k,
5 1.
Presy IN tJ' < N’ J 1’2"--9q (3-8)
-,
- Now, take constants DN which satisfy (2.28) and (2.29). Then the adjacent
-
L : - . s .
% intervals (kj DN,k + D ) and (k DN’ kj+1 + DN) are non-intersecting
: for large N and all j = 1,2,...,q. Define K( ) = (n' = (k',...,ké):g,j <q
s: such that {k',...,ké} n (kj-DN, kj+DN} = ¢}. We shall prove that with prob-
5 ability one for large N,
: S(N)
5 G, <G_ for all m'e RN,
m T q
. o
> Take a partition ' = (k!,...,k'Jeg k(N), we can cofistruct a new partition T,
& which has all cut-points of both " and 7' except the point k.. Denote ™ by
\
S 11 " : " " - tH " e 1e
) (k ""'kﬂ)' Assume kj drops into (ki,ki+l). Let " (kl. Wk kJ k1+1.....k£).
e From Lemma 3.4, with probability for large N we have
- P(G, -G, <CB} <D (3.9)
. 1
3 2 1
N
- Since T, * (k".---.k{) is a refinement partition of n', it is easily proved that
~
TR T i «,4,'._1. '._f.:_._;\' ,.-.‘-._-._-.:'..-.; :P_',-,'\"_s ~ \_\.,-'_ '-.'-.".-\." \'\}\".‘5‘-‘\'\’\‘-'-\ \'\
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(A“,-ATT ) is a non-negative definite matrix based on the expressions of A“
1 1
and A_'. So
w

G, <G_ . (3.10)

At the same time, for n2,< ﬂo’ we can sequentially construct "= (k”.....k;.

k.,k”

; i+l,...,k”) from (kl,...,kq)= L by means of adding one cut-point of n' each

time. Let “q+l denote a partition which has all cut-points of LA and one

cut-point of 7' different from k koo , @ partition which has all

1’ q qt+

cut-points of "q+l and one cut-point of w#' different from all cut-points of

"q+1"" . Thus we obtain

L "q>-”q+1>-"q+27-"'*—"8+1 =T,

By Lemma 2.3
P(G, -6 2C logN} < ClN_(L+2), for § = 0,1,...,¢-q, a.s.
qtj+l qt]
Hence no)— T implies
P(G_ -G_ > LClogN} < LC.N™‘F*2) (3.11)
v T = 1
2 o}
Combining (3.9) - (3.11) and noticing
G, -G =(G_,G_ )+ (G -G_)+(G_-G_),
n i LA LR M
we have for large N
C
I 2 -(L+2)
P{Gn, G"o > > DN} < (L+1)C1N . (3.12)
Note that the constatns C1 and C2 are independent of the choice of
e k;N). Since #(E;N)) < NL, we have

~( =0
P(G_,-G. > O for at least one 1'eK\)} < C (q+1)N™".
! L q 1

By Borel-Cantelli's lemma, with probability one for large N,

- -

- c(N)
n o= (kl,...,kq) ¢ Kq .

which implies that

Thus the theorem is proved.

o e
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s 4. ESTIMATES OF THE NUMBER AND LOCATIONS OF
CHANGE POINTS WHEN q IS UNKNOWN

When the number of the change points is unknown, we have to estimate q.

For this purpose, some notations are introduced. Suppose that WEN) = (kiN),...,kéN))
is an integer partition of [0O,N]. Set
2 K = {(k(N) ,kEN)) 0<e<L,0-c< k(N) VAR N CRY

where £ < L and L is a constant. ﬂEN), ij) will be written as ﬂf,kj:espectivelytekm

. Let the sequences C, and DN satisfy the following conditions:

" N
¥ C D D
lim T = @, lim = = =, li < = 0. (4.2)
N+ OB N+ N N0
A Set
: Ho = - Yiog (A (N)|- £C (4.3)
" 2 g n N '
¢ ¢
. Assume G(N) = (k(N) (?;)) € K is a partition of maximizing H“ when
) t
5 £ runs over all integers of (O,L], i.e.,
N -
HESM LN ) o e (). (4.4)
(N) n
, nee K ¢
o ~(N) ~(N)
» Then, kl vk (N) are grouped into some groups by the following procedure:
L]
, Let kg N) belong to the first group, say M(N) If ﬁgN) - RiN) < DN' RgN) also
v N) : o
' belongs to Mi ; Otherwise k;N) is called an element of the second group M;N),...
In general, assume k(N) Mi' Then
‘ u(N) (N) (N)
) | M i kg -k < Dy
£+1 LN (4.5)
/ i+] ° otherwvise.
Based hi (N) (N) ..
ased on this procedure, we get groups Ml ,....M& finally. Let
-(N) N) . N
ki. be an element of M; ). j= 1.2,...,qN. Then we have the following theorem:
\ ]
:. - e S

\) '\’:fn)n. '. .,_‘, ". J"J\f .‘\-F.r ' ', ’ ’ ( '.}‘ ' -P f-'f\ J.‘\....' "J" --.\ "u p ‘.‘..;..

SN0
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Theorem 4.1. Under hTr , we have

o
(i) iN +q, a.s. (4.6)
iV ~(N)
(1) (g o e 2 Le) s, (4.7)
Proof. 1In order to simplify motation, we write k., for ;§N), "E for véN), etc.

If the hypothesis h ~is true, then there exists a partition = (kl....,kq)
)
so that (3.1) holds. From (3.11), for some C > 0,

) P{G_, - G_ 2 CLlogN} < =
L n
nTEK T L V4 o

Then, with probability one for large N, we have for any { < L and ﬂé = (jl""’jE) i

Hﬂc - H" = G“: - G“ - KCN + qCN = O(IOSN) - ([’Q)CN
4 o L o
<-3Cy<0 (4.8)
This fact shows that the maximum of H" cannot. reach at refinement parti-
13
, 4 4
tions of " Next, set RN DNCN' It follows that
Ry Sy y
lim o 0, lim =— = 0, and lim D " 0. (4.9)
N- “N N N+ “N°N

Define

~(N
K( ) in’ = (ki....,ké)eK:Bj < q such that [ki-kjl > RN for 1=[,...,02}

Then, following the same lines of obtaining (3.12), we have,

with probability one for large N,

) €2
e P 76y 2o g Ry <o (4.10)

Ly n » v - PRt N TR AN LS. "y LI LI LN ) ‘ W, T T,
LA W UM O A AL LN DindCon T n e o Pt il Ca iy LK A ThiUe T n T M b DU LA N v': o':‘o“ o'!‘-'. B e Y
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and with probability one for large N, we have for any né = (k!

c 1 2

C
2 2
H"é - H"o = Gvé - GTTO - (z-q)cN < - Ryt |£-q|cN < -5 RN < 0. (4.11)

This inequality also shows that the maximum of Hv cannot reach at w' above.

In other words, if 7 = (ﬁl,...,ﬁﬁ) is a partition of these maximizing HW, v € K, then

at least one cut-point of w falls into each RN-neighbor of kj, l <j<aq,

with probability one for large N. Hence, based on our procedure of grouping

ﬁl""’iﬁ' it is hnown that, with probability one for large N,

qy 2 9 (4.12)
Further, we prove that all cut-points of n = kﬁl,...,ﬁﬁ) must drop into
q D D
u (ki - ‘g. ki + —E)' with probability one for large N.
j=1 .

First, suppose ﬂk = (k',...,kk) satisfies the following condition:

c(N)
né €K - K » Mo L and for some i < &,

q
' - - -- .
k Emil(km RN,km+RN). b 1,2,...,i-1,i+l,..., ¢

b
and
' q
-R /2 2
kie u (km RN/-.km+RN/_).
m=]
: " = 1] 1 ) 1 : : " :
Write "ol (kl""'ki-l'ki+1""’k£)' It is obvious that né “Z-l' Since
R L e k) X )
2-1 ¢ i-171 TTi-lTi+l TUi-1TE TTi-1 il
1 - - - -
+ = (k! k) (X, X, vOMX ., ox,, ) 20 (4.13)
N oL T k) Tk Rer Rk Rk g
Assume that k! < kj-l < k; ki< kj (see figure 1)(For other permutations of

k t ! I - : :
i-l'kx’ki+1'kj-l and kj. the treatment is similar.)

2PNz |
.=N SN2 - =Ry

' x 3% e

x

kx-l Kj-l ki k1+1 kJ

Figure 1

'., . '(‘f" . ‘f" A '.-""l P (.f\(~f v

L
!




Set
k, . - k!
o = E*-%-ET—i—l » B=1-a.
i-1

i

Making routine calculation and noticing (2.14), we can change (4.13) into the

form.
1 _ ] { - [
(kjki ) (ki k)

1
' !
NCkippkyoy)

A, - A, = (ax +8% . ' ).
"y Ty k. -kk'

J
Kio1kyo 1% KR

< '
B R k)

j-17i i+l

. (ox, ,
kiogkyog

20k -ky )Ck} k() 2,

T Lt a
N(ki ki 1)

TS ol )
vy ey

A

16(k!-k! )(k

N(k! -k; L

k!)

i+1 4 2,-

[a(x,, -u, )(x . “u. . )!
R N LT I

+

2 -
8™ (x )(X e+ (L, B Xy oy H)!
j- lkl i J-lki ~J -k k - k1k1+1 -3

(4.14)

"
—
+
—

But by Lemma 4.3, we get uniformly for all those w) satisfving (%),

g
C
= gclogN,) _ 2N
MBJIQ =g ) o(N) a.s. (4.15)
and 2
(kifl-k' ) (k' -ki)
*max 1) = ORTTRT )(k' -kf ) (4.16)
i i-1
Dy
i -k’ < LI —_— [ 1 =
Since kj ki1 Ry kg kj_1 > —5» from (4.2), for large N, ki - ki
DN
' _ - ] —_ : t . . s
(k.1 ki-l) + (kj k1 1) > 5o, we get uniformly for all those i satisfying (%),
A (1)) = O(Ei-) = (Eg) (4.17)
max 1 ND T VN A :
and
L .-r .“.‘ e - \"\-'h‘ < \f.-. n" ._ N .‘.-('.$ \\'4' AR e

NN

- - v “r]

R

[ S o



-

R

Sy

f A ax (Aﬂ%-l-A"é) S A I+ A (1) = o(g),  a.s. (4.18)

From this inequality and Remark 2.2, with probability one for large N, we have for

. all those m) satisfying (%),
S
N .
\ _ = - X - - _
M H 21 H".2 5 (logIAn,é_ | loglA",e|) (£-1)Cy +£Cy
. ~ 1
: =0o(C) +Cy>5C; >0 ‘ (4.19)
Next, set 7' ¢ K = k(N). Assume that ﬂé.>{ " and there exist more than
L

: one cut-points of 7' in the
.
“j 4 Py Py

complementary set of U (kj- —» kj+ =). Write
o J=l )
; [ ' ' 1 ' 1
- " (k ""’ki' ki+1”"’ki+w+l""'k2)

and suppose that there exists a cut-point, kj say, of vo such that
’ Dy Dy
o ! - — —
. Y e(kj_l 5 ,kj_1+ 7 )
: D D

' . N N
- Kivwrl €657 2okt )
. and
- D D
- N N
a U — - —
) ki+1""’k3+w £ [kj_1+ 2'kj 2 ]
. . < DN *; < .D_N" < D_N e
- I T 2 2
X 2 % H— * % " % %
1] ' 1] ] 1 I
ki kg Kivl Kiap Kigwen Kiww K Kt

l Figure 2
2 Let
< ’ = ' i ' ' ' ' ' - C
) ﬂe-ml (k ,.'.,ki’ki'.'l’...'kiﬂn,ki*u}’ki"‘w“’l’...’ke) m_o‘l'._.’w 1.
‘
BRI AN TN N0 S IR 2% SOk A N L B T S AR A A A iy
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X 21
'
+
": ] = ' ' ' e ! .
: T = (Kpoeeonkis Kip e eeok))
! From (4.18), we get uniformly for all those nk and ﬂz w+mabove,
; C
N
s Amax(Aw' - A ) = °(_§)’ a.s.
;: e gewtl
‘
r
! Following the same lines as obtaining (4.15), we have uniformly for all those
\ ! above,
ne £-urtm CN
™ Aax At AL ) = o(=), a.s.
- maxX Mo w2 purtl
-
N Again notice that Exk' = pj, r=1i+1,...,i + w, hence by Lemma 2.3, we have
uniformily for nk,w and qé,
w-1
(A -A_, ) < z (A ] -A ' )
maxX Mhw "2 m=0 2% Tp-wtm " e-wrtmtl

C
<o) + (w-2) 0(2%8Y) = o(), a.s.

From this fact and the Remark 2.2 of Lemma 2.3, it is proved that with probability

one for large N, we have for all those nk above, there exists ™ o such that
4 N
H+ =-H.,=-3(log|lA., |-logl|lA_,|) - (&h)C, +2£C
LY Ty JA L Ty N N
- L
= o(Cy) + hCy > 5 Cy > O. (4.20)

The inequalities (4.19) and (4.20) show that the maximum of H, mek,

can not reach at partitions for which there exists one cut-point at least droping

q Dy DN - R
out of U (kj- Z’k + ~— ). According to our procedure of grouping kl kﬁ
j=1

with probability one for large N, no two or more groups exist in each
D

—% -neighbor of kj' Hence

dN <q a.s. (4.21)

Combining (4.12) and (4.21) we have, with probabilityv one for large N,
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Thus the theorem is proved.
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5, TESTS OF HYPOTHESES FOR DETECTION OF CHANGE POINTS

First, we assume that I is known and the number of change points is

unknown. Let Hi: U, = u, for i =1, 2,..., N~1. Then we can test {see

-1 Sit+d

Krishnaiah (1969)) the hypotheses Hl""’HN-l simultaneously as follows. Let

2
X, (x-x )‘(22) (x -X,..)

i i+l
for i = 1,2,...,(N-1). Then, we accept or reject Hi according as
Z .

where

) N-1

PlxT < ¢ 3 i=1,2,...,N-1] n H,] = (1l-a).
i~ "o . i
i=]

The joint distribution of xi,...,xé_l is a multivariate chi-square distribution.

Tables for approximate percentage points of c, are given in Krishnaiah (1980).
2
If © is unknown but an independent estimate (S/v) of I is available, we use T;

instead of xi as test statistics where

2 _ _ ] B
Ti = (% §i+l) (S/v) (x X, +l)

We can determine the number of change points and estimate the locations of

N-1
change points by the above method. Here, we note that n Hi indicates that

i=]
My e Ty and no change points exist. If Hl""’HN—l are all simultaneously
rejected, then we have (N-1) change points. If q of the hypothesis Hi\i=l,...,

i
N-1J are rejected, then there are q change points. Suppose 0 H is accepted

i=1
and Hi+1 is rejected, a change point occurs at ey Suppose q 1is knowu, then

tﬁ ""’CR are change points where they are chosen as follows:
1 q
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2 2 2
xél = max{xl,...,xN_l}
xﬁz = max{x?, i=l,...,N-1; i # El}
xE3 = max{xi; i=l,...,N-1; i # Rl,ﬁz}
xéq = max{x?; i=l,...,N-1; i # fcl, ) ,'q_l},

We can use finite intersection tests proposed by Krishnaiah (1965) for
multiple comparisons of mean vectors also to estimate the locations of change

points.
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